Network Based Fusion of Global and Local Information in Time Series Prediction with The Use of Soft-Computing Techniques

نویسنده

  • Shun-Feng Su
چکیده

Forecasting data from a time series is to make predictions for the future from available data. Thus, such a problem can be viewed as a traditional data mining problem because it is to extract rules for prediction from available data. There are two kinds of forecasting approaches. Most traditional forecasting approaches are based on all available data including the nearest data and far away data with respect to the time. These approaches are referred to as the global prediction scheme in our study. On the other hand, there also exist some prediction approaches that only construct their prediction model based on the most recent data. Such approaches are referred to as the local prediction schemes. Those local prediction approaches seem to have good prediction ability in some cases but due to their local characteristics, they usually fail in general for long term prediction. In this chapter, the authors shall detail those ideas and use several commonly used models, especially those model free estimators, such as neural networks, fuzzy systems, grey systems, etc., to explain their effects. Another issues discussed in the chapter is about multi-step predictions. From the author’s study, it can be found that those often-used global prediction schemes can have fair performance in both one-step-ahead predictions and multistep predictions. On the other hand, good local prediction schemes can have better performance in the one-step-ahead prediction when compared to those global prediction schemes, but usually have awful performance for multi-step predictions. In this chapter, the authors shall introduce several approaches of combining local and global prediction results to improve the prediction performance. DOI: 10.4018/978-1-61520-757-2.ch009

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

A COMPARATIVE STUDY OF TRADITIONAL AND INTELLIGENCE SOFT COMPUTING METHODS FOR PREDICTING COMPRESSIVE STRENGTH OF SELF – COMPACTING CONCRETES

This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their perf...

متن کامل

Prediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence

Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....

متن کامل

Application of statistical techniques and artificial neural network to estimate force from sEMG signals

This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...

متن کامل

Entropy-based Consensus for Distributed Data Clustering

The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015